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A one-dimensional problem on unsteady diffusion of a distributed substance through a conventional 

diffusion boundary layer is formulated and solved. Based on its solution relations are obtained for 

calculation of the instantaneous and mean mass transfer coefficients for the times corresponding to layer 

formation. A procedure is proposed for calculation of the mentioned coefficients using the known 

dimensionless relations derived for the steady process. 

Introduction. In calculations of mass transfer between dispersed and continuous phases in various mass 

transfer processes as weft as in chemical interactions controlled by mass transfer in the ambient phase, use is 

usually made of dimensionless relations that have been derived in a steady-state regime and are valid for these 

conditions. At the same time in practice cases occur in liquid-liquid, liquid-solid, gas-liquid systems when mass 

transfer is an unsteady process, namely, at low values of the diffusion coefficient and when the contact times of 

interacting phases are small. The approach proposed below is intended for describing such mass transfer processes. 

Mathematical Model. Consider a particle of the dispersed phase and assume that it represents a sphere. 

In the general case, a flow around a spherical particle is characterized by complicated hydrodynamics [ I ], which 

makes it difficult to obtain an exact analytical solution allowing for peculiarities of the flow over the sphere surface, 

inhomogeneity of the viscosity and velocity fields, and the diffusion coefficient in dynamic and diffusional boundary 

layers. Therefore, in order to simplify the problem we introduce a diffusional boundary layer with thickness 6 = 

const and spherical symmetry which corresponds to the condition of equality of the diffusion resistance of mass 

transfer at r --, oo to that in the steady state: R/~ = 1/fist. 

Assume that: 1) distributed-substance transfer in this boundary layer is accomplished only by molecular 

diffusion at D = const; 2) particle size remains unchanged through the process; 3) the substance concentration at 

the external boundary of the boundary layer is constant and equal to its value in the flow core: Crned = const; 4) 

the initial concentration of the substance in the boundary layer is also constant and equal to Creed; 5) near the 

particle surface the equilibrium concentration is reached momentarily and is constant through the process: Cs = 

const; 6) the problem possesses spherical symmetry. 

With such assumptions made, we formulate a nonstationary problem of diffusion of a distributed substance 

in the conventional boundary layer in the form: 

OCov - D ( Ord2 C2 + r Or) , R < r < R + c 3 ,  z > 0 ;  

CIr=0=Cmed, R < r < _ R + c ~ ;  

Clr=n = Cs, r > 0 ;  

C[r=R+6 = Cmed, "t" > 0,  

(1) 

Moscow V. P. Goryachkin Agricultural Engineering University, Moscow; M. V. Lomonosov State Academy 
of Fine Chemical Technology, Moscow, Russia. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 70, No. 6, 

pp. 930-935, November-December, 1997. Original article submitted January. 8, 1996. 

1062-0125/97/7006-0889518.00 �9 Plenum Publishing Corporation 889 



w h e r e  D, Cmed, Cs,  R ,  6 = c o n s l .  

To solve (I) analytically, we perform substitution of the variables in (1) using the relations: p = r / R ;  60 = 

6 / R ;  W(p,  Fo m) = [C(r, 3) - Cme d ] / (C  s - Creed); Fo m = D r / R  2 

OW _ O 2 W +  2 0 W  1 < p <  1 + 6  0 Fom > 0 "  (2) 
OFom Op 2 p O p '  ' ' 

WlFom= o = 0 ,  l _<p_<  1 + 6 0 ;  

Wlp= 1 = 1, Fo m > 0 ;  

Wlp=l+60 = O. 

Using the integral transform for a hollow sphere in the form [2 ] 

1 +3 0 

"W (n, Fore) = f p W (p, Fore) sin nn (p - 1) 
1 60 dp, 

(3) 

we find the inverted transform of the operator 

l+'~~ (O2W 2 ol+ ) 

1 p o p  

2 
- -  t i T / :  ~ - -  

sin n.~ (/9 1) dp = B-fr O - W .  
6o 

(4) 

With allowance for (4) we can write problem (2) in the following way: 

aFo----m + [-~0-0) W = -~0-0 ' F~ > O, W I Fore= 0 = O.  
(5) 

A s o l u t i o n  o f  (5 )  i s  

Fore> 'o [l,xo [ (6) 

Using the inversion formula [2] 

o o  m 

W(p,  F O m ) = p _ ~ o ?  - ~ ( n ,  Forn) s i n n . 7 ~ O  1) 
=1 

(7) 

we pass from (6) to a solution of the problem in the space of inverted transforms 

- sin ~ 1 - exp - Fom 
C s - Cmed /9 n = l  n 0 ~ 0  " 

(8) 

To improve this solution, we use the procedure descr ibed in [3]. For this, we add  the expression 

(1/po)((1 + 6 o ) / p  - t)  to the right-hand side and subtract (2 /np)E  ( l / n )  sin rur(p - 1)/6o, which is equal to it. 
As a result, we arrive at n=l 

- - sin exp - F~ + 1 60 
C s - Cmed ~P n 3 0 ~oo ~o P 1 . (9) rt=l 

890 



Next,  using the equality 

OC I = f l  ( r )  ( C  s - Cmed) , i ( r )  = -- D--~r r=R 
(1o) 

where i(r) is the specific flow of the distributed substance near the spherical particle surface (kg / (m2.sec) ) ,  we 

calculate the instantaneous mass t ransfer  coefficient from the solution obtained 

t (r) - 

_ D L q  
Or r=R (11) 

C s -- Cmed 

As a result, we have 

= 
[(1 + 6o)/6ol D 

R 
] + -3-  exp - r . 

n=l  

(12) 

Note that at r --, oo and 6 --, oo this equation yields f l (2R)/D = Num.st.min = 2, which corresponds to s teady-s ta te  

diffusion in a s tat ionary medium [4 ]. 

Now we determine the mean value of fl(r) on the segment [0, ro ], where r0 is the time of contact of phases: 

1 r0 

(ro) = To f fl (r) d r .  (13) 
0 

Considering that ~ 1/n 2 = z~2/6, we obtain from (12) 
n = l  

(to) = 1(1 + 6o ) /6o l  D +--60 2602 ~ --2 exp - r o . (14) 

R 3r 0 J r r 0 n = l n  [ 60 ) 

Using Eq. (14) and considering that the series converges rapidly ( -  as Z 1 / n  2) we can finally write 

Num un = 2 + - - 5  exp - ~z , (15) 
�9 6 0 Fo m Jr 6 

where ]~"Um.un -- f l (2R)/D represents l ~ m  on the segment [0, To 1. 

At Fore -" oo we obtain from (15) 

1 + 6 0  
lim ~Um.un = Num.st = 2 

(16) 

is the  s t e a d y - s t a t e  Num cor respond ing  to the h y d ro d y n am ica l  s i tuat ion de te rmin ing  the thickness  of the 

conventional diffusion boundary  layer 6 0. At 6 0 = 6 / R  --, oo, which corresponds to diffusion in a s teady-s ta te  

medium, the limiting case for Num, i.e., Num.st.min = 2, follows again from (16), which corresponds to the analytical 

solution of the problem for s teady-s ta te  diffusion [4 I. 

With allowance for (16) we can represent Eq. (15) in the form 

Num.un = Num.st + - ~ exp _ jr ~ -  . (17) 
Fo m 6 0 

Equation (17) is used to calculate mean mass transfer coefficients on the segment [0, r 0 ] for unsteady mass 

t ransfer  processes. The procedure for its application is as follows: 1) Num.st is calculated for the mass t ransfer  
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Nurn.st 

ld 

1011 \~ 
10 0 

10-6 10-Y 117-4 10 -3 18 "e 10 -r 10 ~ 10 ~ Fore 

Fig. 1. Num.n/Nurn.st =f(Fom)60 calculated by Eq. (17): 1) c30 = 0.001, 2) 0.01, 
3) 0.1, 4) 1, 5) 10, 6) 100, 7) 1000. 

conditions using the corresponding dimensionless mass transfer  equation; 2) using (16), the nominal thickness of 

the diffusion boundary  layer  c~ o corresponding to the determined Num.st is found: 60 = 2/(Num.st - 2); 3) with the 

aid of Eq. (17), the running mean Nu'---m.un number on the segment [0, 301 and then the mean mass t ransfer  

coefficient on it are  determined:  ]/un = "N-'ffm.unD/2R. 

Figure 1 shows Num.un/Nura.st = f(Fora)h 0 calculated at different c50 values. 

At Fore --" 0, ]/un ~ 0% which corresponds to an infinitely high concentration gradient near  the interphase 

at the onset  of mass transfer.  As far  as the process develops, the concentration gradient decreases thus resulting, 

in conformity with (11) and (13), in a decrease in ]/un, which tends at r ~ oo to its limiting (stationary) value for 

the prescribed hydrodynamic  conditions of the flow around the particle. 

As is seen, the Fom value at which the function ~UUm.un approaches its stationary value with a prescribed 

accuracy depends to a large extent  on c~0, which is determined by the particle diameter  2R and hydrodynamic  

conditions of the flow past the particle, which determine the value of c~. The ratio/~un//~st increases with an increase 

in the nominal thickness of the diffusional boundary layer 6 and particle diameter  2R and with a decrease in the 

diffusion coefficient D and the time of interaction of phases 30. 

Now we illustrate Eq. (11) as applied to an analysis of the unsteadiness effect on mass t ransfer  in various 
mass t ransfer  processes. 

Analysis of  Mass Trans fe r  Processes.  1. Drying. Fast drying processes are typical for spray driers,  

pneumatic, cyclone driers, and some others. Calculations based on data [5-7 ] typical for such types of apparatuses 

on the residence times in the working zone and particle sizes using the known dimensionless equations for mass 

transfer  coefficients show because of the high diffusion coefficient of vapors in gases with the order  O(D) = 10 -5 

m2/sec  that at a sufficiently high relative velocity of particles under  drying conditions large Fora values and, as a 

consequence, a s teady mass t ransfer  process are realized. 

However, at Rere I ~ 0 the situation can be different since under  these conditions the parameter  c3 o increases 

considerably which, as is seen from the figure, entails marked expansion of the region where the unsteadiness 

effect is manifested. For  instance, on evaporation of water droplets with diameter  2R = 3.2 mm in air at a relative 

velocity of the phases equal to zero for the experimental conditions described in [8 ] the Num.st calculation performed 

by the procedure [9 ] with allowance for natural convection and Stefan diffusion phenomena gives Num.st = 2.59, to 

which, according to Eqs. (16) and (17), c~ 0 = 3.4 and Numun = 3.46 correspond, i.e., the increase in the mass 
t ransfer  coefficient due to the unsteadiness effect is 34 ~o. 

It should be also noted that the Num values observed in [8 ] are higher than those calculated above, which, 

in our opinion, is due to turbulence in an air flow that moved, instead of remaining motionless, through the channel 

with mean velocity v = 3.785 m/sec ,  which for channel diameter d c = 0.048 m gives Re = vdc / v  = 12,275 > 10,000. 
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Vortices generated by the turbulent motion of air that has penetrated into the outer  region of the diffusional 

ooundary  layer  existing around a droplet and diffused it, thus causing a decrease in its effective thickness and,  

consequently,  an increase in the Num number. The  analysis made confirms the conclusion [10] that a use of 

formulas of the type 

Nu m = 2 + A Re m Prnm (18) 

at Rerel ~ 0 is doubtful. Indeed,  in this case empirical formula (18) gives Num = 2; however, for nonlaminar  

motion of the external  phase Num must not be equal to 2 (which corresponds to molecular diffusion in a 

s teady-state  medium) but, in accordance with (16), to the value of Num.st = 2(1 + ~0)/~0 > 2, where ~0 is 

d e t e r m i n e d  by  the  d e g r e e  of t u rbu l ence  of the flow of the ex te rna l  phase ,  which is d e p e n d e n t  at  Rerel 

0 on Re = vdc/v ,  where v is the absolute velocity of the external  phase. Moreover, the influence of the 

natural  convection and Stefan diffusion (of the latter, by the way, at any values of Rerel) on mass t ransfer  

must be taken into consideration. 

2. Liquid Extraction.The diffusion coefficients of low-molecular substances in liquids are smaller by four 

orders  of magnitude than in gases, i.e., O(D) = 10 -9 m2/sec. Nevertheless, calculations for mass t ransfer  in a 

continuous phase with extraction in a column apparatus with sieve trays at the parameters  values typical for this 

apparatus [11 ] show a small contribution of the unsteadiness effect which in practice can be neglected. 

3. Absorption. Though the diffusion coefficients of an absorbed gas in a liquid phase are of the same order  

of magnitude as in the previous case, due to the smaller time of contact of the phases in the bubbling layer  the 

unsteadiness effect can be ra ther  considerable in some cases. Thus,  for the conditions [12 ] of SO2 absorption in 

water  the mass t ransfer  coefficient in the liquid is reported to be equal to/~ -- 1.5.10 -4 m/sec.  If it is assumed for 

sieve trays that the height of the bubbling layer is h -- 0.05 m, the bubble diameter is d = 0.005 m, the speed of 

its rise is v = 0.25 m/sec ,  the coefficient of S02 diffusion in water at 20~ is D -- 1.3.10 -9 m2/sec,  then the 

corresponding calculations give: Num.st = 577; N-'-Um.un = 801, i.e., the unsteadiness effect causes an increase in the 

mass t ransfer  coefficient by 39 %. 

4. Dissolution of Solid Substances. In dissolution of solid substances, cases are often encountered when 

mass t ransfer  proceeds in uns teady conditions caused, for instance, by particle residence in a flow changing its 

direction or velocity or particle migration from one flow to another  differing from the former in the velocity vector 

[1 ], and so on. The  characteristic times of these transient processes are sufficiently small, which makes Eq. (17) 

applicable for their  description. 

In particular, among fast unsteady processes is dissolution of solid substances exposed to pulsed attacks 

for the purpose of process intensification, which are generated in a liquid at very high (explosive) rates of energy 

transformation or conversion [1 ]. If it is assumed that the diffusional boundary layer undergoes restoration at the 

moment of pulsed action, then with knowledge of the pulse period r0 one can calculate the mass t ransfer  rate by 

relation (17). 

5. Chemical Reactions. All the above gives us grounds to assert that the results obtained can be also applied 

for describing the kinetics of chemical reactions in heterogeneous systems in which the continuous phase is a liquid 

and the rate of the process is limited by mass transfer  in the liquid phase. 

6. Mass Transfer at Lower Temperatures. With a decrease in the system's  temperature  the diffusion 

coefficient of the distr ibuted substance decreases, which, other  conditions being equal, results in enhancement  of 

the unsteadiness effect. In connection with this, at temperatures lower than 0~ it should be expected that this 

effect can exert  a pronounced influence on mass transfer  in the liquid phase under  conditions of short- t ime contact 

of phases. 

7. Diffusion Processes in Polymer Systems. The  diffusion coefficients of macromolecules in monomer  

solutions are of the order  of O(D) = 10 -1~ ... 10 -13 m2/sec [13], which at small times of contact of the phases 

makes the unsteadiness effect even more considerable than in the cases above. 
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C O N C L U S I O N S  

1. As a result of solving the diffusion problem for a distributed substance in a conventional boundary layer, 
equations for calculation of instantaneous and time-averaged m a s s  transfer coefficients as well as an expression 

relating the mass-transfer Nusselt numbers for unsteady and steady stages of the process are obtained. 

2. A procedure is proposed for calculation of the mass transfer coefficient in the unsteady stage of the 

process by the dimensionless equations obtained under steady mass transfer conditions. 

3. Based on the relations obtained, the unsteadiness effect is analyzed in various mass transfer processes, 

which allows the regions of its most pronounced influence to be found. 

4. It is shown that at zero relative velocity of the continuous and dispersed phases the mass-transfer Nusselt 

number must not be assumed equal to 2 in calculations if their absolute velocities are not zero. For this case, it is 
suggested to take also into account the influence of the Reynolds number, calculated in terms of the absolute velocity 

of the continuous phase, on mass transfer. 

N O T A T I O N  

C, concentration, kg/m3; D, diffusion coefficient, m2/sec; r, radial coordinate, m; R, radius of spherical 

particle, m; v, velocity, m/see; Vreb relative velocity of phases, m/see; r ,  mass transfer coefficient, m/see; 6, 
thickness of conventional diffusional boundary layer, m; v kinematic viscosity, m2/sec; r, time, sec; Fore = 

Dr0/R 2, mass-transfer Fourier number; N um = fl(2R)/D, mass-transfer N usselt number; Prm - -v /D,  mass-transfer 

Prandtl number; Rere l  -- Vrel(2R)/v, Reynolds number. Subscripts: c, channel; un, unsteady; rel., relative; s, at the 

particle surface; med, ambient medium; st, steady; m, mass-transfer. 
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